COMPARATIVE STUDY
EVALUATION STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing.

OBJECTIVES: Antimicrobial susceptibility testing of bacterial isolates is essential for clinical diagnosis, to detect emerging problems and to guide empirical treatment. Current phenotypic procedures are sometimes associated with mistakes and may require further genetic testing. Whole-genome sequencing (WGS) may soon be within reach even for routine surveillance and clinical diagnostics. The aim of this study was to evaluate WGS as a routine tool for surveillance of antimicrobial resistance compared with current phenotypic procedures.

METHODS: Antimicrobial susceptibility tests were performed on 200 isolates originating from Danish pigs, covering four bacterial species. Genomic DNA was purified from all isolates and sequenced as paired-end reads on the Illumina platform. The web servers ResFinder and MLST (www.genomicepidemiology.org) were used to identify acquired antimicrobial resistance genes and MLST types (where MLST stands for multilocus sequence typing). ResFinder results were compared with phenotypic antimicrobial susceptibility testing results using EUCAST epidemiological cut-off values and MLST types.

RESULTS: A total of 3051 different phenotypic tests were performed; 482 led to the categorizing of isolates as resistant and 2569 as susceptible. Seven cases of disagreement between tested and predicted susceptibility were observed, six of which were related to spectinomycin resistance in Escherichia coli. Correlation between MLST type and resistance profiles was only observed in Salmonella Typhimurium, where isolates belonging to sequence type (ST) 34 were more resistant than ST19 isolates.

CONCLUSIONS: High concordance (99.74%) between phenotypic and predicted antimicrobial susceptibility was observed. Thus, antimicrobial resistance testing based on WGS is an alternative to conventional phenotypic methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app