Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The PPARγ agonist protects cardiomyocytes from oxidative stress and apoptosis via thioredoxin overexpression.

Oxidative stress has been implicated in the pathogenesis of various cardiovascular diseases, including ischemic heart disease and heart failure. The peroxisome proliferator-activated receptor gamma (PPARγ) agonist improves insulin sensitivity and limits tissue inflammation and cellular apoptosis, but there are few data on the relationship between the PPARγ agonist, rosiglitazone (RSG), and the thioredoxin (TRx) system in oxidatively stressed cardiomyocytes (CMCs). Here we provide evidence that the PPARγ agonist RSG protects rat CMCs from hydrogen peroxide (H2O2)-induced apoptosis by TRx overexpression. The expression levels of pAkt/Akt, pErk/Erk, survivin, Bcl-2/Bax-α, and manganese-superoxide dismutase were increased by RSG pretreatment in H2O2-injured rat CMCs. On the contrary, the expression levels of caspase-3 and p53 were decreased by RSG pretreatment. These effects of RSG were reversed by chemical inhibitors of TRx and the PPARγ antagonist. This suggests that RSG protects rCMCs from H2O2-induced oxidative stress through TRx overexpression and a PPARγ-dependent mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app