Add like
Add dislike
Add to saved papers

Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract.

There are many methods to synthesise metal and metal oxide nanoparticles (NPs) using different reducing agents which are hazardous in nature. Although some researchers have used biobased materials for synthesis of these NPs, further research is needed in this area. To explore the scope of bio-extract for the synthesis of transition metal NPs, the present paper synthesises metal NPs replacing hazardous traditional reducing agents. This paper reports the synthesis of palladium and iron NPs, using aqueous extract of Terminalia chebula fruit. Reduction potential of aqueous extract of polyphenolic rich T. chebula was 0.63V vs. SCE by cyclic voltammetry study which makes it a good green reducing agent. This helps to reduce palladium and iron salts to palladium and iron NPs respectively. Powder X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) analyses revealed that amorphous iron NPs were within the size less than 80 nm and cubic palladium NPs were within the size less than 100 nm. The synthesised nanomaterials were remarkably stable for a long period and synthesis of stable metal NPs will need to be explored using biobased materials as reducing agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app