JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Molecular control of oocyte meiotic arrest and resumption.

Mammalian oocytes within Graafian follicles are arrested at prophase I by factors from surrounding follicle cells, and resume meiosis after an LH surge from the pituitary. The maintenance of meiotic arrest requires high levels of cAMP, resulting from G-protein-coupled receptor (GPR) 3 and/or GPR12 activation of adenylyl cyclase within the oocyte. Recent studies indicate that natriuretic peptide precursor C (NPPC), acting via its cognate receptor NPR2, increases cGMP levels in granulosa cells; the cGMP then diffuses into oocytes and inhibits phosphodiesterase 3A activity and cAMP hydrolysis. Meiotic resumption is induced by LH via the generation of epidermal growth factor (EGF)-like growth factors in mural granulosa cells that activate EGF receptors in cumulus cells. However, the exact mechanisms underlying the actions of these growth factors on oocyte maturation are unclear. Herein we summarise the regulatory functions of NPPC and NPR2 in maintaining oocyte meiotic arrest and discuss the possibility that LH could stimulate meiotic resumption by decreasing NPPC content and NPR2 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app