ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Low-temperature preparation of TiO2/PS/Fe3O4, and its photocatalytic activity and magnetic recovery].

This study reports the fabrication of magnetically responsive titania catalyst, which consisted of a magnetic core surrounded by a titania shell. The magnetic core (oleic acid-modified Fe3O4 nanoparticles) was modified with polystyrene as inert isolating layer. The magnetic photocatalyst was prepared at low temperature (90 degrees C) and a neutral pH (about 7). The phase composition, morphology, surface properties and magnetic properties of the composite particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), fourier infrared photometer (FT-IR) and vibrating sample magnetometer (VSM). The photocatalytic activity of the samples were determined by degradation of phenol and their recovery characteristics were determined by a self-regulating magnetic recycling equipment. The results illustrated that the mean diameter of anatase titanium dioxide synthesized at low temperature was 2-5 nm, the catalyst TiO2/PS/Fe3O4 [the molar ratio of the magnetic photocatalyst was n(TiO2): n(St): n(Fe3O4) = 60:2.5:1] had the structural integrity of shell/shell/core, and titanium dioxide was loaded firmly on the PS/FeO4 surface. The photocatalytic degradation of phenol followed first-order reaction kinetics and the reaction rate constant K of the TiO2/PS/Fe3O4 [n(TiO2): n(St): n (Fe3O4) = 60:2.5:1] was 0.0258, which was close to that of pure TiO2 (K = 0.0262). After 5 times recycling, the K value reduced only by 0.0034. The catalyst had a strong magnetic induction, and the average recovery rate reached 92%. The magnetic TiO2 photocatalyst prepared by this low-temperature hydrolysis method has a good application prospect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app