JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hyperketonemia induces upregulation of LFA-1 in monocytes, which is mediated by ROS and P38 MAPK activation.

Type 1 diabetic patients have hyperketonemia, elevated levels of pro-inflammatory and oxidative stress markers, and a higher incidence of vascular disease. This study examines the hypothesis that hyperketonemia increases reactive oxygen species (ROS) and is in part responsible for increased expression of adhesion molecules in monocytes. THP-1 monocytes were treated with acetoacetate (AA) or β-hydroxybutyrate (BHB) (0-10 mmol/L) for 24 h. Results show that AA, but not BHB, increases ROS production in monocytes. Pretreatment of monocytes with N-acetylcysteine (NAC) inhibited AA-induced ROS production. AA treatment induced upregulation of LFA-1 and pretreatment of monocytes with NAC or an inhibitor to p38 MAPK inhibited this upregulation in monocytes. This suggests that physiological concentrations of AA can contribute to increased ROS and activation of p38 MAPK, which may be responsible for AA-induced upregulation of LFA-1 in monocytes. Thus, hyperketonemia contributes to the risk for cardiovascular disease in type 1 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app