JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin 2 receptors.

Sleep 2012 December
STUDY OBJECTIVES: Orexin peptides activate orexin 1 and orexin 2 receptors (OX(1)R and OX(2)R), regulate locomotion and sleep-wake. The dual OX(1)R/OX(2)R antagonist almorexant reduces activity and promotes sleep in multiple species, including man. The relative contributions of the two receptors in locomotion and sleep/wake regulation were investigated in mice.

DESIGN: Mice lacking orexin receptors were used to determine the contribution of OX(1)R and OX(2)R to orexin A-induced locomotion and to almorexant-induced sleep.

SETTING: N/A.

PATIENTS OR PARTICIPANTS: C57BL/6J mice and OX(1)R(+/+), OX(1)R(-/-), OX(2)R(+/+), OX(2)R(-/-) and OX(1)R(-/-)/OX(2)R(-/-) mice.

INTERVENTIONS: Intracerebroventricular orexin A; oral dosing of almorexant.

MEASUREMENTS AND RESULTS: Almorexant attenuated orexin A-induced locomotion. As in other species, almorexant dose-dependently increased rapid eye movement sleep (REM) and nonREM sleep in mice. Almorexant and orexin A were ineffective in OX(1)R(-/-)/OX(2)R(-/-) mice. Both orexin A-induced locomotion and sleep induction by almorexant were absent in OX(2)R(-/-) mice. Interestingly, almorexant did not induce cataplexy in wild-type mice under conditions where cataplexy was seen in mice lacking orexins and in OX(1)R(-/-)/OX(2)R(-/-) mice. Almorexant dissociates very slowly from OX(2)R as measured functionally and in radioligand binding. Under non equilibrium conditions in vitro, almorexant was a dual antagonist whereas at equilibrium, almorexant became OX(2)R selective.

CONCLUSIONS: In vivo, almorexant specifically inhibits the actions of orexin A. The two known orexin receptors mediate sleep induction by almorexant and orexin A-induced locomotion. However, OX(2)R activation mediates locomotion induction by orexin A and antagonism of OX(2)R is sufficient to promote sleep in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app