JOURNAL ARTICLE

Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes

Yogish C Kudva, Seiga Ohmine, Lucas V Greder, James R Dutton, Adam Armstrong, Josep Genebriera De Lamo, Yulia Krotova Khan, Tayaramma Thatava, Mamoru Hasegawa, Noemi Fusaki, Jonathan M W Slack, Yasuhiro Ikeda
Stem Cells Translational Medicine 2012, 1 (6): 451-61
23197849
The induced pluripotent stem cell (iPSC) technology enables derivation of patient-specific pluripotent stem cells from adult somatic cells without using an embryonic cell source. Redifferentiation of iPSCs from diabetic patients into pancreatic islets will allow patient-specific disease modeling and autologous cell replacement therapy for failing islets. To date, diabetes-specific iPSCs have been generated from patients with type 1 diabetes using integrating retroviral vectors. However, vector integration into the host genome could compromise the biosafety and differentiation propensities of derived iPSCs. Although various integration-free reprogramming systems have been described, their utility to reprogram somatic cells from patients remains largely undetermined. Here, we used nonintegrating Sendai viral vectors to reprogram cells from patients with type 1 and type 2 diabetes (T2D). Sendai vector infection led to reproducible generation of genomic modification-free iPSCs (SV-iPSCs) from patients with diabetes, including an 85-year-old individual with T2D. SV-iPSCs lost the Sendai viral genome and antigens within 8-12 passages while maintaining pluripotency. Genome-wide transcriptome analysis of SV-iPSCs revealed induction of endogenous pluripotency genes and downregulation of genes involved in the oxidative stress response and the INK4/ARF pathways, including p16(INK4a), p15(INK4b), and p21(CIP1). SV-iPSCs and iPSCs made with integrating lentiviral vectors demonstrated remarkable similarities in global gene expression profiles. Thus, the Sendai vector system facilitates reliable reprogramming of patient cells into transgene-free iPSCs, providing a pluripotent platform for personalized diagnostic and therapeutic approaches for diabetes and diabetes-associated complications.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23197849
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"