JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of strontium-substituted nanohydroxyapatite coating of porous implant surfaces on implant osseointegration in a rabbit model.

PURPOSE: This study investigated the effects of a strontium-substituted nanohydroxyapatite (Sr-HA) coating, deposited onto porous implant surfaces using an electrochemical process, on implant osseointegration in a rabbit model.

MATERIALS AND METHODS: The surfaces were analyzed by field-emission scanning electron microscopy, x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), a portable surface roughness tester, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Thirty implants (half HA-coated and half Sr-HA-coated) were inserted into femurs of 15 rabbits. After 2, 4, and 8 weeks, the femurs were retrieved and prepared for histomorphometric evaluation.

RESULTS: Microscopic examination showed a surface topography of rodlike crystals on both surfaces. XRD and FT-IR showed that the phase of the deposits was HA. No differences were found in surface roughness between the two groups. ICP-AES showed that the Sr/(Ca+Sr) molar ratio of Sr-HA coating was 10.1 mol%. Histologic observation showed that new bone appeared on both surfaces after 2 weeks and became mature after 8 weeks. Histomorphometric analysis showed no differences between the two groups in bone-to-implant contact at 2 weeks or in bone area within all threads at 2 and 4 weeks. The Sr-HA coated group had significantly higher bone-to-implant contact at 4 and 8 weeks. Significant differences were also found in bone area at 8 weeks.

CONCLUSION: The present study showed that this Sr-HA coating, deposited using an electrochemical process, has the potential to enhance implant osseointegration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app