JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging.

Fluorescence-amplified far-red/near-infrared (FR/NIR) nanoparticles (NPs) are synthesized by co-encapsulation of conjugated polymer donor (poly[9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)fluorenyldivinylene]; PFV) and a fluorogen acceptor (2-(2,6-bis((E)-4-(phenyl(4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl)amino)styryl)-4H-pyran-4-ylidene)malononitrile; TPE-TPA-DCM) with aggregation-induced emission (AIE) characteristics using biocompatible bovine serum albumin (BSA) as the encapsulation matrix. The good spectral overlap and close proximity between PFV and TPE-TPA-DCM in BSA NPs result in a 5.3-fold amplified TPE-TPA-DCM emission signal via fluorescence resonance energy transfer (FRET). The obtained PFV/TPE-TPA-DCM co-loaded BSA NPs are spherical in shape with a large Stokes shift of ∼223 nm and low cytotoxicity. The BSA matrix allows further functionalization with arginine-glycine-aspartic acid (RGD) peptide to yield fluorescent probes for specific recognition of integrin receptor-overexpressed cancer cells. The advantage of PFV amplified FR/NIR signal from TPE-TPA-DCM is further demonstrated in cellular and in vivo imaging using HT-29 colon cancer cells and a murine hepatoma H22 tumor-bearing mouse model, respectively. The high FR/NIR fluorescence and specific cancer targeting ability by RGD surface functionalization make the PFV/TPE-TPA-DCM co-loaded BSA-RGD NPs a unique FR/NIR fluorescent probe for cellular imaging and in vivo tumor diagnosis in a high contrast and selective manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app