Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Saturated hydraulic conductivity of soils in the Horqin Sand Land of Inner Mongolia, northern China.

Water is a limiting factor to plant growth in Horqin Sand Land of China. Knowledge of soil saturated hydraulic conductivity (K(sat)) is of importance because K(sat) influences soil evaporation and water cycling at various scales. In order to analyze the variation of K(sat) along with sand types and soil depths, and its relationship with soil physiochemical properties, six typical lands were chosen, including mobile dune, fixed dune, pine woodland, poplar woodland, grassland, and cropland, and K(sat) was measured in situ by Guelph Permeameter at each type of land. Soil bulk density, organic matter content, and soil particle size distribution were determined in parallel with K(sat) measurement. The results showed that (1) The averaged K(sat) was decreased in the order: mobile dune > fixed dune > pine woodland > poplar woodland > grassland > cropland; changes in K(sat) varied considerably as soil depth increased, e.g., the changes of K(sat) along with soil depth in fixed dune was fitted by exponential model, but it was fitted by parabola model in the pine woodland and grassland. (2) The K(sat) values of fixed dune and mobile dune were varied considerably among three slope positions (dune top, windward slope, and leeward slope). (3) The relationships of K(sat) and soil physiochemical property revealed that soil bulk density, organic matter content, and coarse sand fraction (2∼0.1 mm) were the key factors affecting K(sat) in Horqin Sand Land. Compared with clay and silt content proportion, sand fraction in this region showed a more significant positive correlation with K(sat).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app