JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of CIP2A determines erlotinib-induced apoptosis in hepatocellular carcinoma.

Biochemical Pharmacology 2013 Februrary 2
Erlotinib is a small-molecular inhibitor of epidermal growth factor receptor (EGFR). Here, we identify that cancerous inhibitor of protein phosphatase 2A (CIP2A) is a major determinant mediating erlotinib-induced apoptosis in hepatocellular carcinoma (HCC). Erlotinib showed differential effects on apoptosis in 4 human HCC cell lines. Erlotinib induced significant apoptosis in Hep3B and PLC5 cell lines; however, Huh-7 and HA59T cell lines showed resistance to erlotinib-induced apoptosis at all tested doses. Down-regulation of CIP2A, a cellular inhibitor of protein phosphatase 2A (PP2A), mediated the apoptotic effect of erlotinib in HCC. Erlotinib inhibited CIP2A in a dose- and time-dependent manner in all sensitive HCC cells whereas no alterations in CIP2A were found in resistant cells. Overexpression of CIP2A upregulated phospho-Akt and protected Hep3B cells from erlotinib-induced apoptosis. In addition, silencing CIP2A by siRNA restored the effects of erlotinib in Huh-7 cells. Moreover, adding okadaic acid, a PP2A inhibitor, abolished the effects of erlotinib on apoptosis in Hep3B cells; and forskolin, a PP2A agonist enhanced the effect of erlotinib in resistant HA59T cells. Combining Akt inhibitor MK-2206 with erlotinib restored the sensitivity of HA59T cells to erlotinib. Furthermore, in vivo xenograft data showed that erlotinib inhibited the growth of PLC5 tumor but had no effect on Huh-7 tumor. Erlotinib downregulated CIP2A and upregulated PP2A activity in PLC5 tumors, but not in Huh-7 tumors. In conclusion, inhibition of CIP2A determines the effects of erlotinib on apoptosis in HCC. CIP2A may be useful as a therapeutic biomarker for predicting clinical response to erlotinib in HCC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app