JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Impaired left ventricular systolic function reserve limits cardiac output and exercise capacity in HFpEF patients due to systemic hypertension.

OBJECTIVES: Heart failure (HF) patients with preserved left ventricular (LV) ejection fraction (EF) (HFpEF) due to systemic hypertension (SHT) are known to have limited exercise tolerance. Despite having normal EF at rest, we hypothesize that these patients have abnormal systolic function reserve limiting their exercise capacity.

METHODS: Seventeen patients with SHT (mean age 68 ± 9 years) but no valve disease and 14 healthy individuals (mean age of 65 ± 10 years) underwent resting and peak exercise echocardiography using conventional, tissue Doppler and speckle tracking techniques. The differences between resting and peak exercise values were also analyzed (Δ). Exercise capacity was determined as the workload divided by body surface area.

RESULTS: Resting values for left atrial (LA) volume/BSA (r=-0.66, p<0.001) and global longitudinal strain rate (GLSR) in early (e) and late (a) diastole (r=0.47 and 0.46, p<0.05 for both) correlated with exercise capacity. LVEF increased during exercise in normals (mean Δ EF=10 ± 8%) but failed to do so in patients (mean Δ EF=0.6 ± 9%, p<0.001 between groups). LV GLSR during systole (s) also failed to increase with exercise in patients, to the same extent as it did in normals (0.2 ± 0.2 vs. 0.6 ± 0.3 1/s, p<0.001). The difference between rest and exercise (Δ) in LV lateral wall systolic velocity from tissue Doppler (s') (0.71, p<0.001), Δ in cardiac output (r=0.60, p<0.001) and Δ GLSRs (r=0.48, p<0.05) all correlated with exercise capacity independent of changes in heart rate.

CONCLUSION: HFpEF patients with hypertensive LV disease have significantly limited exercise capacity which is related to left atrial enlargement as well as compromised LV systolic function at the time of the symptoms. The limited myocardial systolic function reserve seems to be underlying important explanation for their limited exercise capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app