Add like
Add dislike
Add to saved papers

Ethanol decomposition on a Pd(110) surface: a density functional theory investigation.

Ethanol decomposition on Pd(110) is comprehensively investigated using self-consistent periodic density functional theory. Geometries and energies for all the intermediates involved are analyzed, and the decomposition network is mapped out to illustrate the reaction mechanism. On Pd(110), the most stable adsorption of the involved species tends to follow the gas-phase bond order rules, wherein C is tetravalent and O is divalent with the missing H atoms replaced by metal atoms. The most likely decomposition pathway of ethanol on Pd(110) is CH(3)CH(2)OH → CH(3)CH(2)O → CH(3)CHO → CH(3)CO → CH(3) + CO → CO + H + CH(4) + C, in which the initial dehydrogenation is the rate-limited step. No C-O scission pathway is identified. Comparing with ethanol decomposition on Pd(111) [Langmuir, 2010, 26, 1879-1888], Pd(110) characterizes relatively high activity and different selectivity. Two crucial factors controlling the variations of reactivity and selectivity from Pd(111) to Pd(110), i.e., the local electronic effect of the metals and the geometrical effect of the relevant transition states, are identified. Four distinct Brønsted-Evans-Polanyi (BEP) relations are identified for the three types of bond scission (C-H, C-O, and C-C) if we consider Pd(111) and Pd(110) as a whole, one for C-H bond scission, one for C-O bond scission, and two for C-C bond scission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app