JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Computational framework to model and design surgical meshes for hernia repair.

Surgical procedures for hernia surgery are usually performed using prosthetic meshes. In spite of all the improvements in these biomaterials, the perfect match between the prosthesis and the implant site has not been achieved. Thus, new designs of surgical meshes are still being developed. Previous to implantation in humans, the validity of the meshes has to be addressed, and to date experimental studies have been the gold standard in testing and validating new implants. Nevertheless, these procedures involve long periods of time and are expensive. Thus, a computational framework for the simulation of prosthesis and surgical procedures may overcome some disadvantages of the experimental methods. The computational framework includes two computational models for designing and validating the behaviour of new meshes, respectively. Firstly, the beam model, which reproduces the exact geometry of the mesh, is set to design the weave and determine the stiffness of the surgical prosthesis. However, this implies a high computational cost whereas the membrane model, defined within the framework of the large deformation hyperelasticity, is a relatively inexpensive computational tool, which also enables a prosthesis to be included in more complex geometries such as human or animal bodies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app