Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Growth of polythiophene/perylene tetracarboxydiimide donor/acceptor shish-kebab nanostructures by coupled crystal modification.

ACS Nano 2012 December 22
Self-assembled crystalline organic nanostructures containing electron donor and acceptor materials hold promise as building blocks for photovoltaic devices. We show that coupled crystallization of poly(3-hexyl thiophene) (P3HT) and perylene tetracarboxydiimide (PDI) induced by solvent evaporation, wherein both components modify crystallization of the other, gives rise to donor/acceptor "shish-kebabs" with tunable nanostructures. P3HT kinetically stabilizes supersaturated solutions of PDI and modifies the growth of PDI crystals, leading to formation of extended PDI shish nanowires that in turn serve as heterogeneous nucleation sites for fibrillar P3HT kebabs during solvent casting. The dimensions of these nanostructures can be tailored through variations in donor/acceptor ratio or solvent quality, and the method is shown to be general to several other poly(3-alkyl thiophenes) and perylene derivatives, thus providing a simple and robust route to form highly crystalline nanophase separated organic donor/acceptor assemblies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app