JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells.

MicroRNAs are a class of short noncoding RNAs that are involved in various biological processes, including differentiation. MicroRNA-140 (miR-140) has been identified as a cartilage-specific microRNA with several targets involved in cartilage development and homeostasis. The aim of this study was to investigate the expression of miR-140 during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells (eCB-MSCs). We demonstrate both that miR-140 is highly expressed in normal equine articular cartilage and that eCB-MSCs express significantly higher levels of this microRNA after 14 days of chondrogenic differentiation. Furthermore, miR-140 expression closely paralleled that of the cartilage-specific transcription factor Sox9, suggesting that miR-140 may be under the transcriptional regulation of Sox9 in these cells. The expression patterns of miR-140 targets the chemokine (CXC motif) ligand 12 (CXCL12), A disintegrin and metalloproteinase with thrombosponin motifs (ADAMTS)-5 and insulin growth factor binding protein 5 (IGFBP5) were also determined; however, only CXCL12 and ADAMTS-5 were repressed while miR-140 expression was upregulated. Together, these studies suggest that miR-140 is an important regulator of cartilage development and homeostasis in eCB-MSCs that may act, in part, through the regulation of CXCL12 and ADAMTS-5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app