EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144.

Colorectal cancer (CRC) frequently metastasizes to the liver, a phenomenon that involves the participation of transforming-growth-factor-β(1) (TGFβ(1)). Blockade of the protumorigenic effects elicited by TGFβ(1) in advanced CRC could attenuate liver metastasis. We aimed in the present study to assess the antimetastatic effect of TGFβ(1)-blocking peptides P17 and P144, and to study mechanisms responsible for this activity in a mouse model. Colon adenocarcinoma cells expressing luciferase were pretreated with TGFβ(1) (Mc38-luc(TGFβ1) cells), injected into the spleen of mice and monitored for tumor development. TGFβ(1) increased primary tumor growth and liver metastasis, whereas systemic treatment of mice with either P17 or P144 significantly reduced tumor burden (p<0.01). In metastatic nodules, mitotic/apoptotic ratio, mesenchymal traits and angiogenesis (evaluated by CD-31, as well as circulating endothelial and progenitor cells) induced by TGFβ(1) were consistently reduced following injection of peptides. In vitro experiments revealed a direct effect of TGFβ(1) in Mc38 cells, which resulted in activation of Smad2, Smad3 and Smad1/5/8, and increased invasion and transendothelial migration, whereas blockade of TGFβ(1)-signaling reverted these features. Because TGFβ(1)-mediated epithelial-mesenchymal transition (EMT) has been suggested to induce a cancer stem cell (CSC) phenotype, we analyzed the ability of this cytokine to induce tumorsphere formation and the expression of CSC markers. In TGFβ(1)-treated cells, tumorspheres were enriched in CD44 and SOX2, which were diminished in the presence of P17. Our data provide a preclinical rationale to evaluate P17 and P144 as potential therapeutic options for the treatment of metastatic CRC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app