JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer.

We report the design, synthesis, and evaluation of a new type of non-precious-metal catalyst made from network polymers. 2,6-Diaminopyridine was selected as a building-block monomer for the formation of a nitrogen-rich network polymer that forms self-supporting spherical backbone structures and contains a high density of metal-coordination sites. A Co-/Fe-coordinating pyrolyzed polymer exhibited a high specific oxygen reduction activity with onset and half-wave potentials of 0.87 and 0.76 V vs RHE, respectively, in neutral media. There was no crossover effect of organics on its activity. The power output of a microbial fuel cell equipped with this catalyst on its cathode was more than double the output with a commercial 20 wt % Pt/C catalyst.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app