JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Decreased mRNA expression of PGC-1α and PGC-1α-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective motoneuron loss. Although the cause of ALS is unknown, oxidative stress, inflammation, and mitochondrial dysfunction have been identified as important components of its pathogenesis. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) plays a central role in the regulation of mitochondrial metabolism and biogenesis via activation of transcription factors, such as nuclear respiratory factors 1 and 2 and mitochondrial transcription factor A (Tfam). Alterations in PGC-1α expression and function have previously been described in models of Huntington and Alzheimer diseases. Moreover, the protective effects of PGC-1α have been shown in animal models of ALS. Levels of PGC-1α correlate with the number of acetylcholine receptor clusters in muscle. This is of particular interest because neurodegeneration in ALS may be a dying-back process. We investigated mRNA and protein expressions of PGC-1α and PGC-1α-regulated factors in the spinal cord and muscle tissues of SOD1 ALS mice and in ALS patients. We detected significant alterations in mRNA expression of PGC-1α and downstream factors with their earliest occurrence in muscle tissue. Our data provide evidence for a role of PGC-1α in mitochondrial dysfunction both in the ALS mouse model and in human sporadic ALS that is probably most relevant in the skeletal muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app