Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanistic understanding of polycyclic aromatic hydrocarbons (PAHs) from the thermal degradation of tires under various oxygen concentration atmospheres.

The thermal degradation of tires under various oxygen concentrations (7-30%/Bal. N(2)) was investigated thermo-gravimetrically at 10 °C min(-1) heating rate over a temperature range from ambient to 1000 °C. Significant mass loss (~55%) was observed at the temperature of 300-500 °C, where the thermal degradation rate was almost identical and independent of oxygen concentrations due to simultaneous volatilization and oxidation. A series of gas chromatography/mass spectroscopy (GC/MS) measurements taken from the effluent of a thermo-gravimetric analysis (TGA) unit at temperature of 300-5000 °C leads to the overall thermal degradation mechanisms of waste tires and some insights for understanding evolution steps of air pollutants including volatile organic carbons (VOCs) and polycyclic aromatic hydrocarbons (PAHs). In order to describe the fundamental mechanistic behavior on tire combustion, the main constituents of tires, styrene butadiene rubber (SBR) and polyisoprene (IR), has been investigated in the same experimental conditions. The thermal degradation of SBR and IR suggests the reaction mechanisms including bond scissions followed by hydrogenation, gas phase addition reaction, and/or partial oxidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app