COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Human cell responses to ionizing radiation are differentially affected by the expressed connexins.

In multicellular organisms, intercellular communication is essential for homeostatic functions and has a major role in tissue responses to stress. Here, we describe the effects of expression of different connexins, which form gap junction channels with different permeabilities, on the responses of human cells to ionizing radiation. Exposure of confluent HeLa cell cultures to (137)Cs γ rays, 3.7 MeV α particles, 1000 MeV protons or 1000 MeV/u iron ions resulted in distinct effects when the cells expressed gap junction channels composed of either connexin26 (Cx26) or connexin32 (Cx32). Irradiated HeLa cells expressing Cx26 generally showed decreased clonogenic survival and reduced metabolic activity relative to parental cells lacking gap junction communication. In contrast, irradiated HeLa cells expressing Cx32 generally showed enhanced survival and greater metabolic activity relative to the control cells. The effects on clonogenic survival correlated more strongly with effects on metabolic activity than with DNA damage as assessed by micronucleus formation. The data also showed that the ability of a connexin to affect clonogenic survival following ionizing radiation can depend on the specific type of radiation. Together, these findings show that specific types of connexin channels are targets that may be exploited to enhance radiotherapeutic efficacy and to formulate countermeasures to the harmful effects of specific types of ionizing radiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app