JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel antibacterial modification treatment of titanium capable to improve osseointegration.

BACKGROUND: Among the different causes of orthopedic and dental implant failure, infection remains the most serious and devastating complication associated with biomaterial devices.

PURPOSE: The aim of this study was to develop an innovative osteointegrative and antibacterial biomimetic coating on titanium and to perform a chemical-physical and in vitro biological characterization of the coating using the SAOS-2 cell line. We also studied the antibacterial properties of the coating against both Gram-positive and Gram-negative bacteria strains.

METHODS: An electrochemical solution containing silicon, calcium, phosphorous, sodium, and silver nanoparticles was used to obtain the antibacterial by Anodic Spark Deposition (ASD) treatment. Surface morphology was characterized using SEM and laser profilometry. A qualitative analysis of the chemical composition of the coating was assessed by EDS. The adhesion properties of the coating to the titanium bulk were performed with a 3-point bending test. SAOS-2 osteoblastic cell line spreading and morphology and viability were investigated. The bacterial adhesion and the antibacterial properties were investigated after 3 h and 24 h of incubation with Streptococcus mutans, Streptococcus epidermidis, and Escherichia coli bacterial strains.

RESULTS: The proposed anodization treatment created a chemically and morphologically modified, adherent titanium oxide layer, characterized by a microporous morphology enriched by calcium, silicon, phosphorous, and silver. The preliminary biological characterization showed optimal SAOS-2 cell adhesion and proliferation as well as a strong antibacterial effect.

CONCLUSIONS: Based on the results of this study, we believe that this novel biomimetic and antibacterial treatment hold promise for enhancing osteointegration while conferring strong antibacterial properties to titanium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app