JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

nm23-H1 is a negative regulator of TGF-β1-dependent induction of epithelial-mesenchymal transition.

Members of transforming growth factor-β(TGF-β) family are the main inducers of epithelial-mesenchymal transition (EMT) during embryogenesis and cancer pathogenesis. However, a significant crosstalk between TGF-β and other signals occurs during the induction of EMT. nm23-H1 was the first metastasis suppressor gene to be identified on the basis of an inverse relationship between nm23-H1 expression and metastasis stage. Despite extensive studies, the mechanism underlying its ability to suppress metastasis is far from elucidated. We demonstrated here that the nm23-H1 negatively regulated TGF-β1-dependent induction of EMT in non-aggressive lung cancer cell line. nm23-H1 knockdown significantly enhanced TGF-β1-induced suppression of epithelial marker E-cadherin and upregulation of mesenchymal markers β-catenin and fibronectin. The invasive and migratory potential of lung cancer cells upon TGF-β1 treatment was also markedly enhanced by nm23-H1 knockdown. On the other hand, the effect of nm23-H1 depletion on TGF-β1-induced EMT was reversed by ectopic re-expression of shRNA-resistant nm23-H1 protein. Furthermore, TGF-β1-induced EMT potentiated by nm23-H1 depletion was partially dependent on transcriptional factor Snail expression. Finally, we found Src kinase is involved in regulation of TGF-β1-induced EMT by nm23-H1. Our results suggest a means of restoring nm23-H1 to suppress TGF-β1-induced EMT that may exploited therapeutically for the management of metastasis diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app