Add like
Add dislike
Add to saved papers

Coherent versus incoherent excitation energy transfer in molecular systems.

We investigate the Markovian limit of a polaronic quantum master equation for coherent resonance energy transfer proposed recently by Jang et al. [J. Chem. Phys. 129, 101104 (2008)]. An expression for the rate of excitation energy transfer (EET) is derived and shown to exhibit both coherent and incoherent contributions. We then apply this theory to calculated EET rates for model dimer systems, and demonstrate that the small-polaron approach predicts a variety of dynamical behaviors. Notably, the results indicate that the EET dynamical behaviors can be understood by the interplay between noise-assisted EET and dynamical localization, while both are well captured by the polaron theory. Finally, we investigate bath correlation effects on the rate of EET and show that bath correlations (or anti-correlations) can either enhance or suppress EET rate depending on the strength of individual system-bath couplings. In summary, we introduce the small-polaron approach as an intuitive physical framework to consolidate our understanding of EET dynamics in the condensed phase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app