JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7.

Brassinosteroids (BRs) are an important class of phytohormones which regulates a wide range of physiological processes. Genetic and physiological studies have revealed that BR responses usually depend on an intact auxin signaling pathway. Here, we demonstrate that high BR concentration or enhanced BR signaling induce the differential growth of etiolated hypocotyls and result in the morphological changes, while auxin-resistant mutants, msg2 (dominant mutant of IAA19) and arf7, are insensitive to the BR effect and can partially suppress the phenotype of bzr1-D (dominant mutant of BZR1 with enhanced BR signaling). Interestingly, BZR1 protein can directly bind to the promoter regions of both IAA19 and ARF7, indicating that IAA19 and ARF7 mediate the BR-induced differential growth by serving as direct targets of BZR1. Systemic microarray analysis revealed that a number of BR-responsive genes showed reduced BR response in msg2, confirming that BR employs auxin signaling components IAA19 and ARF7 to modulate the specific downstream processes. These results provide informative clues on the crosstalk of BR-auxin signaling and the mechanisms of BR-auxin effects in regulating differential growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app