JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CD69 does not affect the extent of T cell priming.

CD69 is rapidly upregulated on T cells upon activation. In this work we show that this is also the case for CD69 expression on dendritic cells (DC). Thus, the expression kinetics of CD69 on both cell types is reminiscent of the one of costimulatory molecules. Using mouse models of transgenic T cells, we aimed at evaluating the effect of monoclonal antibody (MAb)-based targeting and gene deficiency of CD69 expressed by either DC or T cells on the extent of antigen (Ag)-specific T cell priming, which could be the result of a putative role in costimulation as well as on DC maturation and Ag-processing and presentation. CD69 targeting or deficiency of DC did not affect their expression of costimulatory molecules nor their capacity to induce Ag-specific T cell proliferation in in vitro assays. Also, CD69 targeting or deficiency of transgenic T cells did not affect the minimal proliferative dose for different peptide agonists in vitro. In in vivo models of transgenic T cell transfer and local Ag injection, CD69 deficiency of transferred T cells did not affect the extent of the proliferative response in Ag-draining lymph nodes (LN). In agreement with these results, CD69 MAb targeting or gene deficiency of Vaccinia-virus (VACV) infected mice did not affect the endogenous formation of virus-specific CD8(+) T cell populations at the peak of the primary immune response. Altogether our results argue against a possible role in costimulation or an effect on Ag processing and presentation for CD69.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app