Add like
Add dislike
Add to saved papers

Encapsulation of poly(3-hexylthiophene) J-aggregate nanofibers with an amphiphilic block copolymer.

Poly(3-hexylthiophene) (P3HT) nanofibers (NF) displaying J-aggregate exciton coupling behavior are encapsulated with the amphiphilic block copolymer (BCP), poly(3-hexyl-thiophene)-block-poly(ethylene-glycol), (PHT(20)-b-PEG(108)). Encapsulation results in the formation of hierarchical superstructures, and the BCP coating is expected to exert a mild chemical pressure on the periphery of the NFs. Photoluminescence from encapsulated NF superstructures show line shape distortions due to self-absorption of the 0-0 transition which is consistent with preservation of J-aggregate character (intrachain order). Detailed resonance Raman spectra of encapsulated BCP-NF structures show no discernible changes in the P3HT aggregation state, and overtone and combination bands involving the symmetric stretching C═C (~1450 cm(-1)) and C-C (~1380 cm(-1)) backbone modes are observed. These features permit quantitative estimates of vibrational mode-specific excited state structural displacements using a time-dependent Raman intensity analysis which is not possible from conventional vibronic analysis of optical lineshapes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app