JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators.

Cannabinoids-endocannaboids are possible preventatives of common diseases including cancers. Cannabinoid receptors (CB(½), TRPV1) are central components of the system. Many disease-ameliorating effects of cannabinoids-endocannabinoids are receptor mediated, but many are not, indicating non-CBR signaling pathways. Cannabinoids-endocannabinoids are anti-inflammatory, anti-proliferative, anti-invasive, anti-metastatic and pro-apoptotic in most cancers, in vitro and in vivo in animals. They signal through p38, MAPK, JUN, PI3, AKT, ceramide, caspases, MMPs, PPARs, VEGF, NF-κB, p8, CHOP, TRB3 and pro-apoptotic oncogenes (p53,p21 waf1/cip1) to induce cell cycle arrest, autophagy, apoptosis and tumour inhibition. Paradoxically they are pro-proliferative and anti-apoptotic in some cancers. Differences in receptor expression and concentrations of cannabinoids in cancer and immune cells can elicit anti- or pro-cancer effects through different signal cascades (p38MAPK or PI3/AKT). Similarities between effects of cannabinoids-endocannabinoids, omega-3 LCPUFA and CLAs/CLnAs as anti-inflammatory, antiangiogenic, anti-invasive anti-cancer agents indicate common signaling pathways. Evidence in vivo and in vitro shows EPA and DHA can form endocannabinoids that: (i) are ligands for CB(½) receptors and possibly TRPV-1, (ii) have non-receptor mediated bioactivity, (iii) induce cell cycle arrest, (iii) increase autophagy and apoptosis, and (iv) augment chemotherapeutic actions in vitro. They can also form bioactive, eicosanoid-like products that appear to be non-CBR ligands but have effects on PPARs and NF-kB transcription factors. The use of cannabinoids in cancer treatment is currently limited to chemo- and radio-therapy-associated nausea and cancer-associated pain apart from one trial on brain tumours in patients. Further clinical studies are urgently required to determine the true potential of these intriguing, low toxicity compounds in cancer therapy. Particularly in view of their synergistic effects with chemotherapeutic agents similar to that observed for n-3 LCPUFA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app