Add like
Add dislike
Add to saved papers

Levels of Ca(V)1.2 L-Type Ca(2+) Channels Peak in the First Two Weeks in Rat Hippocampus Whereas Ca(V)1.3 Channels Steadily Increase through Development.

Influx of calcium through voltage-dependent channels regulates processes throughout the nervous system. Specifically, influx through L-type channels plays a variety of roles in early neuronal development and is commonly modulated by G-protein-coupled receptors such as GABA(B) receptors. Of the four isoforms of L-type channels, only Ca(V)1.2 and Ca(V)1.3 are predominately expressed in the nervous system. Both isoforms are inhibited by the same pharmacological agents, so it has been difficult to determine the role of specific isoforms in physiological processes. In the present study, Western blot analysis and confocal microscopy were utilized to study developmental expression levels and patterns of Ca(V)1.2 and Ca(V)1.3 in the CA1 region of rat hippocampus. Steady-state expression of Ca(V)1.2 predominated during the early neonatal period decreasing by day 12. Steady-state expression of Ca(V)1.3 was low at birth and gradually rose to adult levels by postnatal day 15. In immunohistochemical studies, antibodies against Ca(V)1.2 and Ca(V)1.3 demonstrated the highest intensity of labeling in the proximal dendrites at all ages studied (P1-72). Immunohistochemical studies on one-week-old hippocampi demonstrated significantly more colocalization of GABA(B) receptors with Ca(V)1.2 than with Ca(V)1.3, suggesting that modulation of L-type calcium current in early development is mediated through Ca(V)1.2 channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app