Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Retinoic acid signaling in Sertoli cells regulates organization of the blood-testis barrier through cyclical changes in gene expression.

Development 2012 December 2
Mammalian spermatogenesis contributes a constant production of large numbers of spermatozoa, which is achieved by a cyclically regulated program known as the seminiferous epithelial cycle. Sertoli cells, functionally unique somatic cells, create a microenvironment to support the continuous differentiation of germ cells especially through the formation of a blood-testis barrier (BTB). The BTB is essential for maintaining homeostasis in seminiferous tubules and opens transiently at stages VII-VIII to ensure constant differentiation of spermatogenic cells. However, it is poorly understood how the dynamic organization of BTB is regulated. In our current study, we find that the overexpression of a dominant-negative form of RARα (dnRARα) in Sertoli cells disrupts the BTB at stages VII-XII and causes the large-scale apoptosis of differentiating germ cells. These abnormal events are found to be associated with cyclical gene expression changes in Sertoli cells, which can be represented by abnormal activation and repression of genes showing peaks of expression during stages I-VI and VII-XII, respectively. We find that one such gene, Ocln, encoding a tight junction component, partly contributes to the BTB disruption caused by dnRARα. Taken together, our data suggest that the cyclical activation of RA signaling in Sertoli cells during stages VII-XII contributes to a periodic organization of the BTB through changes in stage-dependent gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app