Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH

Fábio Morato de Oliveira, Antonio Roberto Lucena-Araujo, Maria do Carmo Favarin, Patrícia Vianna Bonini Palma, Eduardo Magalhães Rego, Roberto Passetto Falcão, Dimas Tadeu Covas, Aparecida Maria Fontes
Experimental Hematology 2013, 41 (2): 198-208
It has been demonstrated that genomic alterations of cells in the hematopoietic microenvironment could induce myelodysplastic syndromes (MDS) with ineffective hematopoiesis and dysmorphic hematopoietic cells, and subsequent transformation to acute myeloid leukemia. This investigation is the first attempt to correlate the gene expression profile of AURKA and AURKB in a cytogenetically stratified population of mesenchymal stem cells (MSCs) from MDS patients. We found that AURKA messenger RNA was expressed at significantly higher levels in MSCs even with normal/altered karyotype when compared with hematopoietic cells and healthy donors. In addition, we found that the presence of chromosomal abnormalities (mainly aneuploidy) in hematopoietic cells/MSCs was also associated with higher levels of AURKA. Different from previous investigations, our findings, regarding AURKA expression support the hypothesis that the presence of chromosomal abnormalities in MSCs from MDS is not a consequence of the method used for chromosome preparation. They may reflect the genomic instability present in the bone marrow microenvironment of MDS patients. This information is also supported by differences observed in the growth kinetics between MSCs from healthy donors (normal karyotype) and from MDS patients with abnormal karyotype. In summary, our results may not be considered evidence that MDS and MSCs are originated from a single neoplastic clone. In fact, both cells (hematopoietic and MSCs) may probably be altered in response to damage-inducing factors, and the presence of genomic abnormalities in MSCs suggests that an unstable bone marrow microenvironment may facilitate the expansion of MDS/leukemic cells.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"