Add like
Add dislike
Add to saved papers

Conditioning the cortical silent period with paired transcranial magnetic stimulation.

BACKGROUND: A single supra-threshold pulse of transcranial magnetic stimulation (TMS) over human motor cortex elicits multiple descending volleys (I-waves) that generate a motor evoked potential (MEP) followed by a period of electromyographic silence in the tonically contracted target muscle (silent period; SP). A sub-threshold conditioning stimulus (CS) delivered at inter-pulse intervals (IPIs) of 1-5 ms after a supra-threshold test stimulus (TS) conditions I-waves elicited by TS and can increase MEP amplitude (short-interval intracortical facilitation; SICF), however its effect on the SP remains unknown.

OBJECTIVE: We investigated whether it is possible to modulate the SP resulting from a TS by delivering a sub-threshold CS 1-5 ms later.

METHODS: Paired-pulse TMS was delivered while subjects performed slight contraction of the first dorsal interosseous muscle. SICF and SP duration were measured at each IPI and compared to amplitude-matched MEPs evoked by single-pulse TMS.

RESULTS: Paired stimulation at IPI 2-5 ms prolonged the SP by 21 ± 3% (P < 0.001) but had no effect on MEP amplitude. At shorter IPIs the CS increased MEP amplitude (by 170 ± 31%), but the SP was not prolonged when compared to an amplitude-matched single-pulse stimulus.

CONCLUSION: The SP can be modified by a CS applied during the early phase of its genesis. We suggest that this is in keeping with an early GABAA contribution to the SP, and it is possible that this new conditioning paradigm may offer another means for probing the excitability of cortical inhibitory networks in human motor cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app