JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Multiple NSAID-induced hits injure the small intestine: underlying mechanisms and novel strategies.

Nonsteroidal anti-inflammatory drugs (NSAIDs) can cause serious gastrointestinal (GI) injury including jejunal/ileal mucosal ulceration, bleeding, and even perforation in susceptible patients. The underlying mechanisms are largely unknown, but they are distinct from those related to gastric injury. Based on recent insights from experimental models, including genetics and pharmacology in rodents typically exposed to diclofenac, indomethacin, or naproxen, we propose a multiple-hit pathogenesis of NSAID enteropathy. The multiple hits start with an initial pharmacokinetic determinant caused by vectorial hepatobiliary excretion and delivery of glucuronidated NSAID or oxidative metabolite conjugates to the distal small intestinal lumen, where bacterial β-glucuronidase produces critical aglycones. The released aglycones are then taken up by enterocytes and further metabolized by intestinal cytochrome P450s to potentially reactive intermediates. The "first hit" is caused by the NSAID and/or oxidative metabolites that induce severe endoplasmic reticulum stress or mitochondrial stress and lead to cell death. The "second hit" is created by the significant subsequent inflammatory response that would follow such a first-hit injury. Based on these putative mechanisms, strategies have been developed to protect the enterocytes from being exposed to the parent NSAID and/or oxidative metabolites. Among these, a novel strategy already demonstrated in a murine model is the selective disruption of bacteria-specific β-glucuronidases with a novel small molecule inhibitor that does not harm the bacteria and that alleviates NSAID-induced enteropathy. Such mechanism-based strategies require further investigation but provide potential avenues for the alleviation of the GI toxicity caused by multiple NSAID hits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app