Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data

Joong Hyun Kim, Jae Sung Lee, In-Chan Song, Dong Soo Lee
Journal of Nuclear Medicine 2012, 53 (12): 1878-82

UNLABELLED: For attenuation correction (AC) in PET/MRI systems, segmentation-based methods are most often used. However, the standardized uptake value (SUV) of lesions in the bone and liver, which have higher attenuation coefficients than other organs, can be underestimated, potentially leading to misinterpretation of clinical cases. Errors in SUV estimation are also dependent on the segmentation schemes used in the segmentation-based AC. In this study, this potential bias in SUV estimation using 4 different segmentation-based AC methods was evaluated for the PET/CT data of cancer patients with bone and liver lesions.

METHODS: Forty patients who had spine or liver lesions and underwent (18)F-FDG PET/CT participated (18 women and 22 men; 20 spine lesions and 20 liver lesions; mean age (± SD), 60.5 ± 11.4 y; mean body weight, 57.7 ± 10.4 kg). The patient body region was extracted from the CT image and categorized into 5 tissue groups (air, lungs, fat, water, and bone) using Hounsfield unit thresholds, which were determined from the CT histogram. Four segmentation-based AC methods (SLA [soft-tissue/lung/air], WFLA [water/fat/lung/air], SLAB [soft-tissue/lung/air/bone], and WFLAB [water/fat/lung/air/bone]) were compared with CT-based AC. The mean attenuation coefficient for each group was calculated from 40 CT images and assigned to the attenuation maps. PET sinograms were reconstructed using segmentation- and CT-based AC maps, and mean SUV in the lesions was compared.

RESULTS: Mean attenuation coefficients for air, lungs, fat, water, and bone were 0.0058, 0.0349, 0.0895, 0.0987, and 0.1178 cm(-1), respectively. In the spine lesions, the SUVs were underestimated by 16.4% ± 8.5% (SLA AC) and 14.7% ± 7.5% (WFLA AC) but not to a statistically significant extent for SLAB and WFLAB AC relative to CT AC. In the liver lesions, the SUVs were underestimated by 11.1% ± 2.6%, 8.1% ± 3.0%, 6.8% ± 3.8%, and 4.1% ± 3.8% with SLA, SLAB, WFLA, and WFLAB AC, respectively.

CONCLUSION: Without bone segmentation, the SUVs of spine lesions were considerably underestimated; however, the bias was acceptable with bone segmentation. In liver lesions, the segmentation-based AC methods yielded a negative bias in SUV; however, inclusion of the bone and fat segments reduced the SUV bias. The results of this study will be useful for understanding organ-dependent bias in SUV between PET/CT and PET/MRI.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"