JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ambulatory blood pressure monitoring: importance of sampling rate and duration--48 versus 24 hours--on the accurate assessment of cardiovascular risk.

Independent prospective studies have found that ambulatory blood pressure (BP) monitoring (ABPM) is more closely correlated with target organ damage and cardiovascular disease (CVD) risk than clinic BP measurement. This is based on studies in which BP was sampled every 15-30 min for ≤24 h, without taking into account that reproducibility of any estimated parameter from a time series to be potentially used for CVD risk assessment might depend more on monitoring duration than on sampling rate. Herein, we evaluated the influence of duration (48 vs. 24 h) and sampling rate of BP measurements (form every 20-30 min up to every 2 h) on the prognostic value of ABPM-derived parameters. We prospectively studied 3344 subjects (1718 men/1626 women), 52.6 ± 14.5 yrs of age, during a median follow-up of 5.6 yrs. Those with hypertension at baseline were randomized to ingest all their prescribed hypertension medications upon awakening or ≥1 of them at bedtime. At baseline, BP was measured at 20-min intervals from 07:00 to 23:00 h and at 30-min intervals at night for 48 h, and physical activity was simultaneously monitored every min by wrist actigraphy to accurately derive the awake and asleep BP means. Identical assessment was scheduled annually and more frequently (quarterly) if treatment adjustment was required. ABPM profiles were modified to generate time series of identical 48-h duration but with data sampled at 1- or 2-h intervals, or shorter, i.e., first 24 h, time series with data sampled at the original rate (daytime 20-min intervals/nighttime 30-min intervals). Bland-Altman plots indicated that the range of individual differences in the estimated awake and asleep systolic (SBP) and diastolic BP (DBP) means between the original and modified ABPM profiles was up to 3-fold smaller for data sampled every 1 h for 48 h than for data sampled every 20-30 min for the first 24 h. Reduction of ABPM duration to just 24 h resulted in error of the estimated asleep SBP mean, the most significant prognostic marker of CVD events, in the range of -21.4 to +23.9 mm Hg. Cox proportional-hazard analyses adjusted for sex, age, diabetes, anemia, and chronic kidney disease revealed comparable hazard ratios (HRs) for mean BP values and sleep-time relative BP decline derived from the original complete 48-h ABPM profiles and those modified to simulate a sampling rate of one BP measurement every 1 or 2 h. The HRs, however, were markedly overestimated for SBP and underestimated for DBP when the duration of ABPM was reduced from 48 to only 24 h. This study on subjects evaluated prospectively by 48-h ABPM documents that reproducibility in the estimates of prognostic ABPM-derived parameters depends markedly on duration of monitoring, and only to a lesser extent on sampling rate. The HR of CVD events associated with increased ambulatory BP is poorly estimated by relying on 24-h ABPM, indicating ABPM for only 24 h may be insufficient for proper diagnosis of hypertension, identification of dipping status, evaluation of treatment efficacy, and, most important, CVD risk stratification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app