Donor-matched functional and molecular characterization of canine mesenchymal stem cells derived from different origins

Sun-A Ock, Geun-Ho Maeng, Yeon-Mi Lee, Tae-Ho Kim, B Mohana Kumar, Sung-Lim Lee, Gyu-Jin Rho
Cell Transplantation 2013, 22 (12): 2311-21
Canine mesenchymal stem cells (cMSCs) have generated a great interest as a promising source for cell-based therapies. To understand the basic biological properties of cMSCs derived from bone marrow (cBM-MSCs), adipose tissue (cA-MSCs), and dermal skin (cDS-MSCs) from a single donor, the present study compared their alkaline phosphatase (AP) activity, expression of CD markers and stem cell transcription factors, differentiation ability into osteogenic, adipogenic, and chondrogenic lineages, in vivo ectopic bone formation, chromosomal stability, cell cycle status, telomere length, and telomerase activity. Expressions of AP activity and transcription factors (Oct3/4, Nanog, and Sox2) were either absent or extremely weak in all cMSCs. CD marker profile (CD45(-), CD90(+), and CD105(+)) and differentiation capacity were exhibited by all cMSCs, although cA-MSCs had enhanced cytochemical staining associated with expression of lineage-specific markers. In vivo bone formation of cMSCs was performed with demineralized bone matrix (DBM) by transplanting into the subcutaneous spaces of 9-week-old BALB/c-nu mice, followed by radiographic and histological analysis after 1 and 2 months. cA-MSCs and cDS-MSCs, in contrast to the in vitro observations, also displayed higher in vivo osteogenic abilities than cBM-MSCs. Ploidy analysis showed that cells were diploid and contained no noticeable chromosomal abnormalities. Furthermore, a relatively low percentage of cells was found at the G1 phase in all cMSCs, especially in DS-MSCs. Regardless of the different tissue sources, cMSCs from a single donor showed no differences in telomere lengths (∼18-19 kbp) but exhibited varied telomerase activity. The above results suggest that tissue-specific cMSCs derived from a single donor possess slight differences in stem cell properties.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"