Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase.

Dysfunction of Parkin, a RING-IBR-RING motif containing protein, causes autosomal recessive familial Parkinsonism. Biochemically, Parkin is a ubiquitin-ligating enzyme (E3) that catalyzes ubiquitin transfer from ubiquitin-activating and -conjugating enzymes (E1/E2) to a substrate. Recent studies have revealed that Parkin localizes in the cytoplasm and its E3 activity is repressed under steady-state conditions. In contrast, Parkin moves to mitochondria with low membrane potential, thereby activating the latent enzymatic activity of the protein, which in turn triggers Parkin-mediated ubiquitylation of numerous mitochondrial substrates. However, the mechanism of how Parkin-catalyzed ubiquitylation maintains mitochondrial integrity has yet to be determined. To begin to address this, we screened for novel Parkin substrate(s) and identified mitochondrial hexokinase I (HKI) as a candidate. Following a decrease in membrane potential, Parkin ubiquitylation of HKI leads to its proteasomal degradation. Moreover, most disease-relevant mutations of Parkin hinder this event and endogenous HKI is ubiquitylated upon dissipation of mitochondrial membrane potential in genuine-Parkin expressing cells, suggesting its physiological importance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app