JOURNAL ARTICLE
REVIEW

TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities

Rohan Samarakoon, Jessica M Overstreet, Paul J Higgins
Cellular Signalling 2013, 25 (1): 264-8
23063463
During development of TGF-β1-initiated fibroproliferative disorders, NADPH oxidases (NOX family members) generate reactive oxygen species (ROS) resulting in downstream transcription of a subset genes encoding matrix structural elements and profibrotic factors. Prominent among the repertoire of disease-implicated genes is the TGF-β1 target gene encoding the potent profibrotic matricellular protein plasminogen activator inhibitor-1 (PAI-1 or SERPINE1). PAI-1 is the major physiologic inhibitor of the plasmin-based pericellular cascade and a causative factor in the development of vascular thrombotic and fibroproliferative disorders. ROS generation in response to TGF-β1 stimulation is rapid and precedes PAI-1 induction; engagement of non-SMAD (e.g., EGFR, Src kinase, MAP kinases, p53) and SMAD2/3 pathways are both required for PAI-1 expression and are ROS-dependent. Recent findings suggest a novel role for p53 in TGF-β1-induced PAI-1 transcription that involves ROS generation and p53/SMAD interactions. Targeting ROS and ROS-activated cellular events is likely to have therapeutic implications in the management of fibrotic disorders, particularly in the context of prolonged TGF-β1 signaling.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
23063463
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"