Sex chromosomes and the brain: a study of neuroanatomy in XYY syndrome

Daniel M Bryant, Fumiko Hoeft, Song Lai, John Lackey, David Roeltgen, Judith Ross, Allan L Reiss
Developmental Medicine and Child Neurology 2012, 54 (12): 1149-56

AIM: To assess global and regional brain matter variations associated with XYY syndrome by comparison with Klinefelter syndrome and typical development.

METHODS: We used two conceptually distinct voxel-based magnetic resonance imaging methods to examine brain structure in young males with XYY syndrome: (1) volumetric comparison to assess global grey and white matter volumes and (2) support vector machine-based multivariate pattern classification analysis to assess regional neuroanatomy. We assessed verbal, non-verbal, and spatial abilities with the Differential Ability Scales (DAS), and we measured autism diagnostic criteria in eight males with XYY syndrome using the Social Responsiveness Scale and the Autism Diagnostic Interview-Revised (ADI-R).

RESULTS: A comparison of 36 typically developing males (mean age 11 y, SD 1 y 9 mo), 31 males with Klinefelter syndrome (mean age 9 y 8 mo, SD 1 y 8 mo), and eight males with XYY syndrome (mean age 11 y 6 mo, SD 1 y 11 mo) showed that total white and grey matter volumes were significantly, or nearly significantly, higher in males with XYY syndrome than in males belonging to the other two groups (grey matter: XYY males vs typically developing males, p<0.006; XYY vs males with Klinefelter syndrome, p<0.001; white matter: XYY males vs typically developing males, p=0.061; XYY males vs males with Klinefelter syndrome, p=0.004). Voxel-based multivariate pattern classification analysis indicates that, after controlling for global volumes, regional brain variations in XYY syndrome are more like those found in Klinefelter syndrome than those occurring in typical development. Further, visualization of classification parameters suggests that insular and frontotemporal grey matter and white matter, including known language areas, are reduced in males with XYY syndrome, similar to what is seen in Klinefelter syndrome. In males with XYY syndrome, DAS verbal and non-verbal scores were significantly lower than in typically developing participants (both p<0.001). DAS scores were not significantly different between XYY and Klinefelter syndrome groups. In five of eight males with XYY syndrome, the Social Responsiveness Scale score exceeded the cut-off for a likely diagnosis of autism spectrum disorder (ASD). In three of eight males with XYY syndrome, the ADI-R score met the cut-off for ASD diagnosis; in another two, ADI-R scores within the social and communication domains met the cut-off values for a diagnosis of ASD.

INTERPRETATION: The results suggest that genetic variations associated with XYY syndrome result in increased brain matter volumes, a finding putatively related to the increased frequency of ASDs in individuals with this condition. In addition, frontotemporal grey and white matter reductions in XYY syndrome provide a likely neuroanatomical correlate for observed language impairments.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"