Step-to-step variability in treadmill walking: influence of rhythmic auditory cueing

Philippe Terrier
PloS One 2012, 7 (10): e47171
While walking, human beings continuously adjust step length (SpL), step time (SpT), step speed (SpS = SpL/SpT) and step width (SpW) by integrating both feedforward and feedback mechanisms. These motor control processes result in correlations of gait parameters between consecutive strides (statistical persistence). Constraining gait with a speed cue (treadmill) and/or a rhythmic auditory cue (metronome), modifies the statistical persistence to anti-persistence. The objective was to analyze whether the combined effect of treadmill and rhythmic auditory cueing (RAC) modified not only statistical persistence, but also fluctuation magnitude (standard deviation, SD), and stationarity of SpL, SpT, SpS and SpW. Twenty healthy subjects performed 6 × 5 min. walking tests at various imposed speeds on a treadmill instrumented with foot-pressure sensors. Freely-chosen walking cadences were assessed during the first three trials, and then imposed accordingly in the last trials with a metronome. Fluctuation magnitude (SD) of SpT, SpL, SpS and SpW was assessed, as well as NonStationarity Index (NSI), which estimates the dispersion of local means in the times series (SD of 20 local means over 10 steps). No effect of RAC on fluctuation magnitude (SD) was observed. SpW was not modified by RAC, what is likely the evidence that lateral foot placement is separately regulated. Stationarity (NSI) was modified by RAC in the same manner as persistent pattern: Treadmill induced low NSI in the time series of SpS, and high NSI in SpT and SpL. On the contrary, SpT, SpL and SpS exhibited low NSI under RAC condition. We used relatively short sample of consecutive strides (100) as compared to the usual number of strides required to analyze fluctuation dynamics (200 to 1000 strides). Therefore, the responsiveness of stationarity measure (NSI) to cued walking opens the perspective to perform short walking tests that would be adapted to patients with a reduced gait perimeter.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"