In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A role for Nrf2 in redox signalling of the invasive extravillous trophoblast in severe early onset IUGR associated with preeclampsia.

BACKGROUND: Preeclampsia (PE) is characterized by increased lipid oxidation and diminished antioxidant capacity, while intrauterine growth restriction (IUGR) is characterized by impaired invasion of the extravillous trophoblast. Vascular endothelial growth factor (VEGF) has been reported to be altered in preeclampsia. A relationship between VEGF and nuclear factor erythroid 2-related factor-2 (Nrf2) has been shown in vitro, where VEGF prevents oxidative damage via activation of the Nrf2 pathway. In this study the expression of Nrf2, VEGF and 4-hydroxynonenal (4-HNE), was determined in interstitial and endovascular/intramural extravillous trophoblast (EVT) in normal pregnancies and those complicated by severe early onset IUGR associated with preeclampsia IUGR/PE.

MATERIALS AND METHODS: Full-thickness uterine tissues derived from caesarean hysterectomies performed in 5 healthy normotensive women delivering term infants and 6 women with severe early onset IUGR with preeclampsia (29-34 weeks gestation) were analyzed. Interstitial and endovascular extravillous trophoblast were quantified after immunohistochemical staining of paraffin sections using antibodies against Nrf2, 4-HNE, VEGF, and cytokeratin 7.

RESULTS: Uterine tissues from women suffering from severe early onset IUGR/PE were characterized by reduced invasion of extravillous trophoblast into the endometrial and myometrial segments of spiral arteries in the placental bed. Extravillous trophoblast showed an increased cytoplasmic expression of Nrf2 and 4-HNE in IUGR/PE cases. The increased expression of Nrf2 in cases of IUGR/PE was associated with decreased expression of VEGF in these cells compared to controls.

CONCLUSION: Our data suggests that besides villous cytotrophoblast, also the extravillous trophoblast is a source of Nrf2-dependent genes. VEGF deficiency may cause higher oxidative stress in extravillous trophoblast in cases with IUGR/PE. The resulting reduced basal defence against oxidative stress and the higher vulnerability to oxidative damage may play a role in the limited trophoblast invasion into spiral arteries in cases suffering from severe early onset IUGR/PE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app