Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Vascular smooth muscle cell alterations triggered by mice adipocytes: role of high-fat diet.

AIM: Inherent mechanisms leading to vascular smooth muscle cells (VSMC) alterations in obesitylinked type 2 diabetes (T2D) situation remain to be clarified. This study evaluates the impact of supernatant of adipocytes extracted from mice fed high-fat-diets (HFD) on the proliferation and apoptosis of VSMC.

METHODS: Adipocytes were extracted from visceral white fat pads of male and female C57Bl6 mice showing different stages of metabolic alterations after 20 weeks of vegetal or animal HFD feeding. These cells were stimulated or not with insulin or glucose to condition VSMC media. After 24h of stimulation with adipocyte supernatants (AdS), VSMC proliferation and sustainability were assessed in the absence and presence of AdS. CD36 and insulin receptor mRNA levels were also evaluated.

RESULTS: Proliferation and viability of VSMC were significantly modulated by the nature of the AdS used and the gender of mice from which adipocytes have been extracted. The most extensive effects on VSMC were triggered by adipocytes from males fed animal HFD and females fed vegetal HFD. These effects were concurrent with increased leptin concentration and decreased adiponectin levels in AdS. In addition, adipocytes of HFD-fed mice increased caspase-3 activity and apoptosis in VSMC. Significant up-regulation of CD36 mRNA was also found in these cells.

CONCLUSION: Adipocytes of HFD-fed mice induce VSMC alterations. These changes involved mouse gender, most probably correlated to the diet-induced adipocyte secretion profile. Greater sensitivity to AdS effects in VSMC raises concerns about the more frequent cardiovascular events associated with obesity in the presence of T2D, which impairs adipocyte activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app