LETTER
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography.

An algorithm was developed to obtain depth-resolved local optical axis in birefringent samples by using conventional polarization-sensitive optical coherence tomography (PSOCT) that uses a single circularly polarized incident light. The round-trip sample Jones matrices were first constructed from the cumulative PSOCT results. An iterative method was then applied to construct the depth-resolved local Jones matrix from which the local optical axis was calculated. The proposed algorithm was validated in samples with homogeneous axis and with depth-varying optical axis. Imaging examples were shown to demonstrate the capability of this method for extracting correct local axis and revealing features not evident in other images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app