JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Late anti-apoptotic effect of K(ATP) channel opening in skeletal muscle.

Necrosis and apoptosis caused by ischaemia-reperfusion (IR) result in myocyte death and atrophy. ATP-sensitive K(+) (K(ATP) ) channels activation increases tissue tolerance of IR-injury. Thus, in the present study, we evaluated the effects of K(ATP) channel activation on skeletal muscle apoptosis after IR. Male Wistar rats were treated with 40 mg/kg, i.p., diazoxide (a K(ATP) channel opener) or 5 mg/kg, i.p., glibenclamide (a K(ATP) channel inhibitor) 30 min before the induction of 3 h ischaemia, followed by 6, 24 or 48 h reperfusion. At the end of the reperfusion period, the gastrocnemius muscle was removed for the analysis of tissue malondialdehyde content, superoxide dismutase (SOD) and catalase (CAT) activity, Bax and Bcl-2 protein expression, histological damage and the number of apoptotic nuclei. Ischaemia-reperfusion increased malondialdehyde content (P < 0.01) and Bax expression (P < 0.01) and induced severe histological damage, in addition to decreasing CAT and SOD activity (P < 0.01 and P < 0.05, respectively) and Bcl-2 expression (P < 0.01). Diazoxide reversed the effects of IR on tissue damage, MDA content, SOD and CAT activity (after 6 and 24 h reperfusion; P < 0.05) and Bax and Bcl-2 expression (after 24 and 48 h reperfusion; P < 0.01). In contrast, glibenclamide pretreatment had no effect. The number of apoptotic nuclei in the IR and glibenclamide-pretreated groups increased significantly (P < 0.001 vs Sham). In contrast, diazoxide pretreatment decreased the number of apoptotic nuclei compared with the IR group (P < 0.01). The results of the present study suggest that the K(ATP) channel activator diazoxide attenuates lipid peroxidation during the first hour of reperfusion and modulates apoptotic pathways at later time points.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app