JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

HTLV-1 bZIP factor dysregulates the Wnt pathways to support proliferation and migration of adult T-cell leukemia cells.

Oncogene 2013 September 6
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL). HTLV-1 bZIP factor (HBZ), the viral gene transcribed from the antisense strand, is consistently expressed in ATL cells and promotes their proliferation. In this study, we found that a Wnt pathway-related protein, disheveled-associating protein with a high frequency of leucine residues (DAPLE), interacts with both HTLV-1 Tax and HBZ. In the presence of DAPLE, Tax activated canonical Wnt signaling. Conversely, HBZ markedly suppressed canonical Wnt activation induced by either Tax/DAPLE or β-catenin. As a mechanism of HBZ-mediated Wnt suppression, we found that HBZ targets lymphoid enhancer-binding factor 1, one of the key transcription factors of the pathway, and impairs its DNA-binding ability. We also observed that the canonical Wnt pathway was not activated in HTLV-1-infected cells, whereas the representative of noncanonical Wnt ligand, Wnt5a, which antagonizes canonical Wnt signaling, was overexpressed. HBZ was able to induce Wnt5a transcription by enhancing its promoter activity through the TGF-β pathway. Importantly, knocking down of Wnt5a in ATL cells repressed cellular proliferation and migration. Our results implicate novel roles of HBZ in ATL leukemogenesis through dysregulation of both the canonical and noncanonical Wnt pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app