EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag⁺.

Mercaptopropionic acid (MPA) capped CdTe quantum dots (QDs) with particle size 3 nm have been successfully synthesized in aqueous medium by hydrothermal synthesis method. And the effects of different metal ions on MPA capped CdTe QDs fluorescence were studied using fluorescence spectrometry. The results demonstrated that at the same concentration level, Ag(+) could strongly quench CdTe QDs fluorescence, and the other metal ions had little effect on CdTe QDs fluorescence except Cu(2+). On the basis of this fact, a rapid, simple, highly sensitive and selective method based on fluorescence quenching principle for Ag(+) detection in aqueous solution was proposed. Under optimal conditions, the quenched fluorescence intensity (F(0)-F) increased linearly with the concentration of Ag(+) ranging from 4 × 10(-7) to 32 × 10(-7)mol L(-1). The limit of detection for Ag(+) was 4.106 × 10(-8)mol L(-1). The obtained plot of F(0)/F versus [Ag(+)] was an upward curvature, concave towards the y-axis, rather than a straight line. The modified form of the Stern-Volmer equation was third order in Ag(+) concentration. According to the modified Stern-Volmer equation, it can be inferred that dynamic quenching and static quenching simultaneously occurred when Ag(+) interacted with MPA capped CdTe QDs. At the same time other factors might also influence the quenching process. Based on this study, hydrothermal synthesized MPA capped CdTe QDs with particle size 3 nm may be used as a novel fluorescence probe to quantificationally and selectively detect Ag(+).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app