Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Function of DJ-1 in mitochondria].

Parkinson's disease is a degenerative disorder of the central nervous system caused by selective dopamine-generating cell death, and oxidative stress and mitochondrial dysfunction are thought to be responsible for the onset of Parkinson's disease. While most cases of Parkinson's disease are idiopathic, 5-10% of cases are attributed to genetic factors. DJ-1 was first identified as an activated ras-dependent oncogene and later found to be a causative gene for a familial form of Parkinson's disease, PARK7. We and others found that DJ-1 plays roles in transcriptional regulation and anti-oxidative stress function, and loss of its function is thought to affect the onset of Parkinson's disease. DJ-1 is mainly located in the cytoplasma and nucleus and partially in mitochondria. When mice or mouse cells were treated with bisphenol A, an endocrine disruptor and inducer of reactive oxygen species, DJ-1 was translocated into mitochondria to maintain mitochondrial complex I activity. We also found that DJ-1 directly bound to and was co-localized with NDUFA4 and ND1, nuclear and mitochondrial DNA-encoding subunits of mitochondrial complex I, respectively, and that these associations were enhanced by oxidative stress. Furthermore, complex I activity was reduced in two types of DJ-1-knockdown NIH3T3 and HEK293 cells. These findings suggest that DJ-1 is an integral mitochondrial protein and maintains mitochondrial complex I activity to regulate mitochondrial homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app