Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Preparation and characterization of monodisperse core-shell Fe3O4@SiO2 microspheres and its application for magnetic separation of nucleic acids from E. coli BL21.

In this article, we present an easy route to prepare monodisperse core-shell Fe3O4@SiO2 microspheres with uniform size and shape. Their structures and properties were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), and vibrating sample magnetometer (VSM), respectively. The results showed that spherical Fe3O4 microspheres with well dispersion have a rough surface and an average diameter (about 500 nm). After the modification with silica, the particles have a well-defined core-shell structure and a much smoother surface and larger particle diameter (about 600 nm). Furthermore, VSM measurements indicated that the as-prepared Fe3O4 and Fe3O4@SiO2 microspheres were superparamagnetic at room temperature and the saturation magnetization (M(s)) were 58.110 emu/g and 33.479 emu/g, respectively. And then, the prepared monodisperse core-shell Fe3O4@SiO2 microspheres were subsequently applied to separate nucleic acids from the bacteria (E. coli BL21) and verified the great application prospects for bioseparation technology of the biomoleculars.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app