Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vitro and in vivo antitumor activity of a novel pH-activated polymeric drug delivery system for doxorubicin.

BACKGROUND: Conventional chemotherapy agent such as doxorubicin (DOX) is of limited clinical use because of its inherently low selectivity, which can lead to systemic toxicity in normal healthy tissue.

METHODS: A pH stimuli-sensitive conjugate based on polyethylene glycol (PEG) with covalently attachment doxorubicin via hydrazone bond (PEG-hyd-DOX) was prepared for tumor targeting delivery system. While PEG-DOX conjugates via amid bond (PEG-ami-DOX) was synthesized as control.

RESULTS: The synthetic conjugates were confirmed by proton nuclear magnetic resonance (NMR) spectroscopy, the release profile of DOX from PEG-hyd-DOX was acid-liable for the hydrazone linkage between DOX and PEG, led to different intracellular uptake route; intracellular accumulation of PEG-hyd-DOX was higher than PEG-ami-DOX due to its pH-triggered profile, and thereby more cytotoxicity against MCF-7, MDA-MB-231 (breast cancer models) and HepG2 (hepatocellular carcinoma model) cell lines. Following the in vitro results, we xenografted MDA-MB-231 cell onto SCID mice, PEG-hyd-DOX showed stronger antitumor efficacy than free DOX and was tumor-targeting.

CONCLUSIONS: Results from these in vivo experiments were consistent with our in vitro results; suggested this pH-triggered PEG-hyd-DOX conjugate could target DOX to tumor tissues and release free drugs by acidic tumor environment, which would be potent in antitumor drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app